MATLAB code of thesis (An Investigation Of Scattering And Absorptions Cross Sections Of Solar Cells Using Ag Nanoparticles)

39

Description

M.S. Thesis in Optics and Laser Physics

An Investigation Of Scattering And Absorptions Cross Sections Of Solar Cells Using Ag Nanoparticles

Abstract

Improvement of solar cell efficiency is one of the subjects that has attracted a lot of attention in recent years. Plasmonic solar cells, which are being developed lately, are a new generation of solar cells that can be used as better alternatives for low efficient industrial solar cells. In this dissertation, by using Mie theory, the effect of Ag nanoparticles on scattering and absorption cross sections of solar cells were investigated. The scattering and absorption spectra vary by variation of nanoparticle size. Therefore, by choosing an appropriate size, we can increase the scattering at a specific wavelength. Thus, light can travel several times into the cell and increases absorption. For media studied in this work, by increasing the size of nanoparticles, scattering and absorption spectra shift toward higher wavelengths and become wider. New peaks also appear due to excitation of higher plasmonic modes.

Keywords: Scattering, Nanoparticle, Plasmonic, Solar cell.

References :

 

[1] Dimroth, F., Kurtz S.High-efficiency multijunctionsolar cells, MRS Bulletin, Volume 32, 2007.

[2]  Burnett, B., ”The basic physics and design of III-V multijunction solar cells”, 2002.

[3]  Honsberg, C.B., Corkish R, and Bremner S.P. ”A new generalized detailed balance formulation to calculate solar cell efficiency limits”, Proc. 17th Photovoltaic European Conference, 2001.

[4] Green, M.A et al.”Solar cell efficiency tables” (Version 29), Progress in Photovoltaics, 2007.

[5] Müller J., Rech, B. and M. Vanecek, Solar Energy 77, 917-930, 2004.

[6]  Meier, J., Dubail, S., Golay, S., Kroll, U., Faÿ, S., Vallat-Sauvain, E., Feitknecht, L., Dubail, J., and Shah, A., Sol. Energy Mater. Sol. Cells 74, 457-467, 2002.

[7]  Nie, S. and Emory, R., Science 275, 1102, 1997.

[8] Boardman A.D. (1982), Electromagnetic Surface Modes, JohnWiley & Sons, NewYork.

[9]  Maier, S. A., Brongersma, M. L., Kik, P. G., Meltzer, S., Requicha, A. A. G. and A. Atwater, H., Adv. Mat. 13, 1501, 2001.

[10]  Stuart, H. R.  and Hall, D. G., Appl. Phys. Lett.73, 3815, 1998.

[11]  Schaadt, D. M., Feng, B. and Yu, E. T., Appl. Phys. Lett. 86, 063106, 2005.

[12]  Derkacs, D., Lim, S. H., Matheu, P., Mar, W. and Yu, E. T., Appl. Phys. Lett. 89, 093103,  2006.

[13]  Pillai, S., Catchpole, K. R., Trupke, T. and Green, M. A., J. Appl. Phys. 101, 093105,  2007.

[14] Pillai, S., Catchpole, K. R., Trupke, T., Zhang, G., Zhao, J. and Green, M. A., Appl. Phys. Lett. 88, 161102,  2006.

[15]  Westphalen, M., Kreibig, U., Rostalski, J., Lüth, H. and Meissner, D., Sol. Energy Mater, Sol. Cells 61, 97-105, 2000.

[16] Rand, B. P., Peumans, P. and Forrest, S. R., J. Appl. Phys. 96, 7519, 2004.

[17] Morfa, A. J., Rowlen, K. L., Reilly, T. H., Romero, M. J.  and Lagemaatb, J. v. d.  Appl. Phys. Lett. 92, 013504, 2008.

[18] Tanabe, K.; Nakayama, K.; Atwater, H.A. “Plasmon-enhanced absorption and photocurrent in ultrathin GaAs solar cells with metallic nanostructures”, In Proceedings of the 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, May 2008; p. 129.

[19] Chang, T.H., Wu, P.H., Chen, S.H., Chan, C.H., Lee, C.C., Chen, C.C., Su, Y.K. ”Efficiency enhancement in GaAs solar cells using self-assembled microspheres”. Opt. Express, 17, 6519–6524, 2009.

[20] Lezec, H.J.; Thio, T.,”Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”. Opt. Express, 12, 3629–3651, 2004.

[21] Ferry, V.E.; Sweatlock, L.A.; Pacifici, D.; Atwater, H.A. ”Plasmonic nanostructure design for efficient light coupling into solar cells”. Nano Lett. 8, 4391–4397, 2008.

[22] Sze, S. M. (1981), Physics of Semiconductor Devices”, 2nd edition, John Wiley & Sons, Inc.

[23] Streetman B. G. and Banerjee S. K., (2006), ”Solid state electronic devices”. Pearson.

[24] Green, M. A.  (2003), Third Generation Photovoltaics,  Springer,.

[25] Nelson, J.,”Quantum-Well Structures for Photovoltaic Energy Conversion”. Thin Films, 21, 1995.

[26] Gray, J. L.  (2003), the Physics of the Solar Cell, John Wiley and Sons.

[27] Hovel, H. J.”Semiconductors and Semimetals”, vol. 11, Solar Cells. Academic press, 1975.

[28] Gangopadhyay, U., Dhungel S.K., Basu, P.K, etal. ”Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication”.  Solar Energy Materials and Solar Cells, vol.91, No.4, pp.285-289, ISSN 0927-0248, 2007.

[29] Chen, F.X. & Wang, L.S., ”Optimized Designof Antireflection Coating for Silicon Solar Cells with Board Angle Usage”, Acta Energiae Solaris Sinica, vol.29, pp.1262-1266, ISSN 0254-0096,  2008.

[30] Derkacs, D., Lim, S. H., Matheu, P., et al.”Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles”. Appl. Phys. Lett., vol.89, pp. 093103-1-093103-3, ISSN 0003-6951, 2006.

[31] Fesquet, L., Olibet, S., Damon-Lacoste, J. et al.  ”Modification of textured silicon wafer surface morphology for fabrication of heterojunction solar cell with open circuit voltage over 700mV”. 34th IEEE Photovoltaic Specialists Conference (PVSC), ISBN 978-1-4244-2950-9, Philadelphia, June, 2009.

[32] Wang, H.Y.”The research on light-trapping materials and structures for silicon-based solar cells”. Ph.D thesis, Zhengzhou University, Zhengzhou, China, 2005, 

[33] Yang Deren, (2010), Materials for solar cells, Chemical Industry Press, ISBN 978-7-5025-9580-7, China:Beijing.

[34] Meng, F.Y.,”Grain boundary theory and photovoltaic characteristics of solar cell on polycrystalline silicon material”, Ph.D thesis, Shanghai Jiaotong University, Shanghai, China, 2001.

[35] Geng Xue-Wen, Li Mei-Cheng & Zhao Lian-Cheng, ”Research development of light trapping structures for thin-film silicon solar cells”,  Journal of Function Materials, vol.41, No.5, pp.751-754, ISSN 1001-9731, 2010.

[36] Markvart, T. and  Castner, L.,”Solar cells: Materials, Manufacture and Operation”, China Machine Press, ISBN 978-7-111-26798-0, China: Beijing , 2009.

[37] Wang, Y.D.,”Study on optical properties of solar cells”, Ph.D thesis, Shanghai Jiaotong University, Shanghai, China, 2001.

[38] Wang, W.H., Li, H.B. and Wu, D.X., “Designand analysis of anti-reflection coating for solar cells”, Journal of Shanghai University (Nature Science), vol.10, No.1, pp.39-42, ISSN 1007-2861, 2004.

[39] Lin, Y.C. and Lu, W.Q., “Principles of Optical Thin Films”, National Defense Industry Press, ISBN 978-7-118-00543-1, China: Beijing, 1990.

[40] Atwater, H. A. and Polman, A. “Plasmonics for improved photovoltaic devices”,   Nature Materials, vol. 9, pp.205–213, ISSN 1476-1122,  2010.

[41] Craig F. Bohren, Donald, Huffman R. (1983), Absorption and scattering of light by small particles, Wiley.

[42] http://en.wikipedia.org/wiki/Encyclopedia.

[43] Edward D. Palik, (1985), Handbook of Optical Constants of Solids, Academic Press.

[44] Trondheim, “Modeling of intermediate band solar cells”, Ph.D theses, (2009).

 

The healing of bone grafts

 

Solar Energy Utilization for Electric Generation

 

 

 

 

Reviews

There are no reviews yet.

Be the first to review “MATLAB code of thesis (An Investigation Of Scattering And Absorptions Cross Sections Of Solar Cells Using Ag Nanoparticles)”

Your email address will not be published. Required fields are marked *

SKU: send_b2017_0010_c2240 Category: Tags: , , ,