Dual tree complex wavelet transform for medical image denoising



In Medical diagnosis operations such as feature extraction and object recognition will play the key role. These tasks will become difficult if the images are corrupted with noise. So the development of effective algorithms for noise removal became an important research area in present days. Developing Image denoising algorithms is a difficult task since fine details in a medical image embedding diagnostic information should not be destroyed during noise removal. Many of the wavelet based denoising algorithms use DWT (Discrete Wavelet Transform) in the decomposition stage are suffering from shift variance and lack of directionality. To overcome this in this paper we are proposing the denoising method which uses dual tree complex wavelet transform to decompose the image and shrinkage operation to eliminate the noise from the noisy image. In the shrinkage step we used semi-soft and stein thresholding operators along with traditional hard and soft thresholding operators and verified the suitability of dual tree complex wavelet transform for the denoising of medical images. The results proved that the denoised image using DTCWT (Dual Tree Complex Wavelet Transform) have a better balance between smoothness and accuracy than the DWT and less redundant than UDWT (Undecimated Wavelet Transform). We used the SSIM  Structural similarity index measure) along with PSNR (Peak signal to noise ratio) to assess the quality of denoised images.

 output code :

PSNR before denoising = 22.1291
PSNR after denoising = 33.9045

PSNR = 33.936334139531006

first input :

04 input image

noisy image :

05 noisy image

output image :

05 denoised image MATLAB code


second input image :

01 input image dual tree complex wavelet transform

noisy image :

02 noisy image MATLAB code download dual tree complex wavelet transform

output image ;

03 output image MATLAB code download dual tree complex wavelet transform


There are no reviews yet.

Be the first to review “Dual tree complex wavelet transform for medical image denoising”

Your email address will not be published. Required fields are marked *