One-hot encoding is a way to represent the target variables or classes in case of a classification problem. The target variables can be converted from the string labels to one-hot encoded vectors. A one-hot vector is filled with 1 at the index of the target class but with 0 everywhere else. For example, if the target classes are cat and dog, they can be represented by [1, 0] and [0, 1], respectively. For 1,000 classes, one-hot vectors will be of size 1,000 integers with all zeros but 1. It makes no assumptions about the similarity of target variables. With the combination of one-hot encoding with softmax explained in the following section, multi-class classification becomes possible in ANN.
Cart
Product Categories
Product tags
algoritmo genético ant colony system Arduino microcontroller Bildsegmentierung Clustering data mining face recognition genetic algorithm Gesichtserkennung Image denoising Image Processing image segmentation Kalman Filter local binary pattern Matlab MATLAB कोड MATLAB コード MATLAB 代碼 Particle swarm optimization Procesamiento de imágenes reconocimiento facial representación dispersa Sparse Representation Support vector machine Visual tracking Микроконтроллер Arduino Обработка изображений генетический алгоритм код MATLAB распознавание лиц التعرف على الوجوه आनुवंशिक एल्गोरिथ्म चेहरा पहचान छवि प्रसंस्करण छवि विभाजन स्पैस प्रतिनिधित्व 人臉識別 圖像分割 圖像去噪 画像セグメンテーション 画像処理 稀疏表示 遺伝的アルゴリズム 遺傳演算法 顔認識