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The Curvelet Transform

[ Jianwei Ma and Gerlind Plonka] 

©DIGITAL VISION

M
ultiresolution methods are 
deeply related to image pro-
cessing, biological and com-
puter vision, and  scientific 
computing. The curvelet trans-

form is a multiscale directional transform that 
allows an almost optimal nonadaptive sparse rep-
resentation of objects with edges. It has generated 
increasing interest in the community of applied 
mathematics and signal processing over the 
years. In this article, we present a review on the 
curvelet transform, including its history begin-
ning from wavelets, its logical relationship to 
other multiresolution multidirectional methods 
like contourlets and shearlets, its basic theory and 
discrete algorithm. Further, we consider recent 
applications in image/video processing, seismic 
exploration, fluid mechanics, simulation of partial 
different equations, and compressed sensing.

INTRODUCTION
Most natural images/signals exhibit line-like 
edges, i.e., discontinuities across curves (so-called 
line or curve singularities). Although applications 
of wavelets have become increasingly popular in 
scientific and engineering fields, traditional wave-
lets perform well only at representing point sin-
gularities since they ignore the geometric 
properties of structures and do not exploit the 
regularity of edges. Therefore, wavelet-based com-
pression, denoising, or structure extraction 
become computationally inefficient for geometric 
features with line and surface singularities. In 
fluid mechanics, discrete wavelet thresholding 
often leads to oscillations along edges of the 
coherent eddies and, consequently, to the deterio-
ration of the vortex tube structures, which in turn 
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can cause an unphysical leak of energy into neighboring scales 
producing an artificial  “cascade” of energy. 

Multiscale methods are also deeply related with biological and 
computer vision. Since Olshausen and Field’s work in Nature [55], 
researchers in biological vision have re iterated the similarity 
between vision and multiscale image processing. It has been rec-
ognized that the receptive fields of simple cells in a mammalian 
primary visual cortex can be characterized as being spatially local-
ized, oriented, and bandpass (selective to structure at different spa-
tial scales). However, wavelets do not supply a good direction 
selectivity, which is also an important response property of simple 
cells and neurons at stages of the visual pathway. Therefore, a 
directional multiscale sparse coding is desirable in this field. 

One of the primary tasks in computer vision is to extract fea-
tures from an image or a sequence of images. The features can be 
points, lines, edges, and textures. A given feature is characterized 
by position, direction, scale, and other property parameters. The 
most common technique, used in early vision for extraction of such 
features, is linear filtering, which is also reflected in models used in 
biological visual systems, i.e., human visual motion sensing. Objects 
at different scales can arise from distinct physical processes. This 
leads to the use of scale-space filtering and multiresolution wavelet 
transform in this field. An important motivation for computer 
vision is to obtain directional representations that capture aniso-
tropic lines and edges while providing sparse decompositions. 

To overcome the missing directional selectivity of conventional 
two-dimensional (2-D) discrete wavelet transforms (DWTs), a mul-
tiresolution geometric analysis (MGA), named curvelet transform, 
was proposed [7]–[12]. In the 2-D case, the curvelet transform 
allows an almost optimal sparse representation of objects with sin-
gularities along smooth curves. For a smooth object f  with discon-
tinuities along C2-continuous curves, the best N -term 
approximation f

|
N that is a linear combination of only N  elements 

of the curvelet frame obeys 7 f2 f|N 7 22 # CN22 1 log N 2 3, while for 
wavelets the decay rate is only N21. Combined with other meth-
ods, excellent performance of the curvelet transform has been 
shown in image processing; see e.g., [49], [45], [60], and [61]. 
Unlike the isotropic elements of wavelets, 
the needle-shaped elements of the curvelet 
transform possess very high directional sen-
sitivity and anisotropy (see Figure 1 for the 
2-D case). Such elements are very efficient 
in representing line-like edges. Recently, 
the curvelet transform has been extended to 
three dimensions by Ying et al. [7], [68]. 

Let us roughly compare the curvelet 
system with the conventional Fourier and 
wavelet analysis. The short-time Fourier 
transform uses a shape-fixed rectangle in 
frequency domain, and conventional wave-
lets use shape-changing (dilated) but area-
fixed windows. By contrast, the curvelet 
transform uses angled polar wedges or 
angled trapezoid windows in frequency 
domain to resolve directional features. 

The theoretic concept of curvelets is easy to understand, but 
how to achieve the discrete algorithms for practical applications is 
challenging. In this article, we first address a brief history of curve-
lets starting from classical wavelets. We also mention some other 
wavelet-like constructions that aim to improve the representation 
of oriented features towards visual reception and image process-
ing. Then we shall derive the discrete curvelet frame and the cor-
responding fast algorithm for the discrete curvelet transform in 
the 2-D case. Finally, we show some recent applications of the dis-
crete curvelet transform in image and seismic processing, fluid 
mechanics, numerical treatment of partial differential equations, 
and compressed sensing. 

FROM CLASSICAL WAVELETS TO CURVELETS
As outlined in the introduction, although the DWTs has established 
an impressive reputation as a tool for mathematical analysis and 
signal processing, it has the disadvantage of poor directionality, 
which has undermined its usage in many applications. Significant 
progress in the development of directional wavelets has been made 
in recent years. The complex wavelet transform is one way to 
improve directional selectivity. However, the complex wavelet trans-
form has not been widely used in the past, since it is difficult to 
design complex wavelets with perfect reconstruction properties and 
good filter characteristics [29], [53]. One popular technique is the 
dual-tree complex wavelet transform (DT CWT) proposed by 
Kingsbury [37], [38], which added (almost) perfect reconstruction 
to the other attractive properties of complex wavelets, including 
approximate shift invariance, six directional selectivities, limited 
redundancy and efficient O 1N 2  computation. 

The 2-D complex wavelets are essentially constructed by using 
tensor-product one-dimensional (1-D) wavelets. The directional 
selectivity provided by complex wavelets (six directions) is much 
better than that obtained by the classical DWTs (three directions), 
but is still limited. 

In 1999, an anisotropic geometric wavelet transform, named 
ridgelet transform, was proposed by Candès and Donoho [4], [8]. 
The ridgelet transform is optimal at representing straight-line 

100 200 300
(a)

400 500

100

200

300

400

500

(b)
100 200 300 400 500

100

200

300

400

500

[FIG1] The elements of (a) wavelets and (b) curvelets on various scales, directions, and 
translations in the spatial domain. Note that the tensor-product 2-D wavelets are not 
strictly isotropic but prefer axes directions.
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 singularities. Unfortunately, global straight-line singularities are 
rarely observed in real applications. To analyze local line or curve 
singularities, a natural idea is to consider a partition of the image, 
and then to apply the ridgelet transform to the obtained sub-
images. This block ridgelet-based transform, which is named 
curvelet transform, was first proposed by Candès and Donoho in 
2000, see [9]. Apart from the blocking effects, how ever, the appli-
cation of this so-called first-generation curvelet transform is limit-
ed because the geometry of ridgelets is itself unclear, as they are 
not true ridge functions in digital images. Later, a considerably 
simpler second-generation curvelet transform based on a frequen-
cy partition technique was proposed by the same authors; see 
[10]–[12]. Recently, a variant of the second-generation curvelet 
transform was proposed to handle image boundaries by mirror 
extension (ME) [19]. Previous versions of the transform treated 
image boundaries by periodization. Here, the main modifications 
are to tile the discrete cosine domain instead of the discrete 
Fourier domain and to adequately reorganize the data. The 
obtained algorithm has the same computational complexity as the 
standard curvelet transform. 

The second-generation curvelet transform [10]–[12] has been 
shown to be a very efficient tool for many different applications in 
image processing, seismic data exploration, fluid mechanics, and 
solving partial different equations (PDEs). In this survey, we will 
focus on this successful approach and show its theoretical and 
numerical aspects as well as the different applications of curvelets. 
From the mathematical point of view, the strength of the curvelet 
approach is their ability to formulate strong theorems in approxi-
mation and operator theory. The discrete curvelet transform is very 
efficient in representing curve-like edges. But the current curvelet 
systems still have two main drawbacks: 1) they are not optimal for 
sparse approximation of curve features beyond C2-singularities, 
and 2) the discrete curvelet transform is highly redundant. The 
currently available implementations of the discrete curvelet trans-
form (see www.curvelet.org) aim to reduce the redundancy 
 smartly. However, independently from the good theoretical results 
on N -term approximation by curvelets, the discrete curvelet trans-
form is not appropriate for image compression. The question of 
how to construct an orthogonal curvelet-like transform is still open. 

RELATIONSHIP OF CURVELETS 
TO OTHER DIRECTIONAL WAVELETS
There have been several other developments of directional wavelet 
systems in recent years with the same goal, namely a better analy-
sis and an optimal representation of directional features of signals 
in higher dimensions. None of these approaches has reached the 
same publicity as the curvelet transform. However, we want to 
mention shortly some of these developments and also describe 
their relationship to curvelets. 

Steerable wavelets [28], [59], Gabor wavelets [40], wedgelets 
[23], beamlets [24], bandlets [51], [54], contourlets [21], shear-
lets [39], [31], wave atoms [20], platelets [67], and surfacelets [42] 
have been proposed independently to identify and restore geomet-
ric features. These geometric wavelets or directional wavelets are 
uniformly called X-lets. 

The steerable wavelets [28], [59] and Gabor wavelets [40] can 
be seen as early directional wavelets. The steerable wavelets were 
built based on directional derivative operators (i.e., the second 
derivative of a Gaussian), while the Gabor wavelets were produced 
by a Gabor kernel that is a product of an elliptical Gaussian and a 
complex plane wave. In comparison to separable orthonormal 
wavelets, the steerable wavelets provide translation-invariant and 
rotation-invariant representations of the position and the orienta-
tion of considered image structures. This feature is paid by high 
redundancy. Applications of Gabor wavelets focused on image clas-
sification and texture analysis. Gabor wavelets have also been used 
for modeling the receptive field profiles of cortical simple cells. 
Applications of Gabor wavelets suggested that the precision in res-
olution achieved through redundancy may be a relevant issue in 
brain modeling, and that orientation plays a key role in the prima-
ry visual cortex. The main differences between steerable wavelets/
Gabor wavelets and other X-lets is that the early methods do not 
allow for a different number of directions at each scale. 

Contourlets, as proposed by Do and Vetterli [21], form a discrete 
filter bank structure that can deal effectively with piecewise smooth 
images with smooth contours. This discrete transform can be con-
nected to curvelet-like structures in the continuous domain. Hence, 
the contourlet transform [21] can be seen as a discrete form of a 
particular curvelet transform. Curvelet constructions require a 
rotation operation and correspond to a partition of the 2-D fre-
quency plane based on polar coordinates; see the section “The 
Discrete Curvelet Frame.” This property makes the curvelet idea 
simple in the continuous case but causes problems in the imple-
mentation for discrete images. In particular, approaching critical 
sampling seems difficult in discretized constructions of curvelets. 
For contourlets, critically sampling is easy to implement. There 
exists an orthogonal version of the contourlet transform that is fast-
er than current discrete curvelet algorithms [7]. The directional fil-
ter bank, as a key component of contourlets, has a convenient 
tree-structure, where aliasing is allowed to exist and will be can-
celed by carefully designed filters. Thus, the key difference between 
contourlets and curvelets is that the contourlet transform is directly 
defined on digital-friendly discrete rectangular grids. Unfortunately, 
contourlet functions have less clear directional geometry/features 
than curvelets (i.e., more oscillations along the needle-like ele-
ments) leading to artifacts in denoising and compression. 

Surfacelets [42] are 3-D extensions of the 2-D contourlets 
that are obtained by a higher-dimensional directional filter 
bank and a multiscale pyramid. They can be used to efficiently 
capture and represent surface-like singularities in multidimen-
sional volumetric data involving biomedical imaging, seismic 
imaging, video processing and computer vision. Surfacelets and 
the 3-D curvelets (see the section “Three-Dimensional Curvelet 
Transform”) aim at the same frequency partitioning, but the 
two transforms achieve this goal with different approaches as 
we described above in the 2-D case. The surfacelet transform is 
less redundant than the 3-D curvelet transform, and this advan-
tage is payed by a certain loss of directional features. 

Unlike curvelets, the shearlets [39], [31] form an affine system 
with a single generating mother shearlet function parameterized 
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by a scaling, a shear, and a translation parameter, where the shear 
parameter captures the direction of singularities. It has been 
shown that both the curvelet and shearlet transforms are (at least 
theoretically) similarly well suited for approximation of piece-wise 
smooth images with singularities along smooth curves [12], [31]. 
Indeed, using the fast curvelet transform based on transition to 
Cartesian arrays, described in the section “Transition to Cartesian 
Arrays,” the discrete implementations of the two transforms are 
very similar [7]. 

The bandlet transform [51], [54] is, in contrast with the previ-
ously mentioned transforms, based on adaptive techniques and 
has a good performance for images with textures beyond C2-sin-
gularities, but it has to pay much higher computational cost for 
its adaptation. 

In this article, we are not able to give a more detailed overview 
on all these approaches and refer to the given references for fur-
ther information. 

THE DISCRETE CURVELET FRAME
In this section, we want to consider the construction of a discrete 
curvelet frame. Recalling the structure of 1-D wavelets being well 
localized in frequency domain, we consider the question how these 
ideas can suitably be transferred to construct a curvelet frame that 
is an (almost) rotation-invariant function frame in two dimen-
sions. Finally, we summarize the properties of the obtained curve-
let elements. 

WHAT CAN BE LEARNED FROM THE 
1-D WAVELET TRANSFORM?
Using the 1-D dyadic wavelet transform in signal analysis, one 
considers a family of dilated and translated functions 5cj,k J 2j/2c 12j # 2k 2  :  j, k [ Z6,  generated by one mother 
wavelet c [ L2 1R 2 , and being an orthonormal basis of L2 1R 2 . 
Then, each signal f [ L2 1R 2  can be uniquely represented in a 
wavelet expansion 

 f5 a
j, k

cj, k 1 f 2  cj, k, 

where cj, k 1 f 2 :5 8f, cj, k9 are the wavelet coefficients. Here 8 # , # 9  
denotes the scalar product in L2 1R 2 . Observe that the Fourier 
transformed elements of the wavelet basis have the form 

ĉj, k 1j 2 5 22j/2 e2i22 jjk ĉ 122jj 2 , 
i.e., dilation by 2 j in space domain corresponds to dilation by 
22j in frequency domain, and the translation corresponds to a 
phase shift. 

For a good frequency localization of the wavelet basis, the 
main idea is to construct a wavelet basis that provides a partition 
of the frequency axis into (almost) disjoint frequency bands (or 
octaves). Such a partition can be ensured if the Fourier transform 
of the dyadic wavelet ĉ has a localized or even compact support 
and satisfies the admissibility condition 

 a
`

j52`
|ĉ 122jj 2 |25 1,   j [ R a.e.. (1)

This admissibility condition also ensures the typical wavelet 
property ĉ 10 2 5 e`2`c 1x 2  dx5 0.

A particularly good frequency localization is obtained, if ĉ is 
compactly supported in 322, 2 1/2 4h 31/2, 2 4. Such a construc-
tion has been used for Meyer wavelets (see Figure 2). Obviously, 
the dilated Meyer wavelets ĉ 122jj 2  generate a tiling of the fre-
quency axis into frequency bands, where ĉ 122jj 2  has its support 
inside the intervals 322j11, 22j21 4h 32j21, 2j11 4. In this case, 
for a fixed j [ R, at most two wavelet functions in the sum (1) 
overlap. We remark that the condition (1) implies even more! It 
ensures that the function family 5cj, k  :  j, k [ Z6  forms a tight 
frame of L2 1R 2 (see e.g., [50, Theorem 5.1]). 

Finally, a localization property of the dyadic wavelet trans-
form in space domain is guaranteed if also c is localized, i.e., if 
ĉ is smooth. 

HOW TO TRANSFER THIS IDEA TO THE 
CURVELET CONSTRUCTION
We wish to transfer this construction principle to the 2-D case for 
image analysis and incorporate a certain rotation invariance. So, 
we wish to construct a frame, generated again by one basic ele-
ment, a basic curvelet f, this time using translations, dilations, 
and rotations of f. Following the considerations in the 1-D case, 
the elements of the curvelet family should now provide a tiling of 
the 2-D frequency space. Therefore the curvelet construction is 
now based on the following two main ideas [11]. 

Consider polar coordinates in frequency domain. 1) 
Construct curvelet elements being locally supported near 2) 

wedges according to Figure 3, where the number of wedges is 
Nj5 4 # 2< j/2= at the scale 22j, i.e., it doubles in each second 
circular ring. (Here <x=  denotes the smallest integer being 
greater than or equal to x.)
Let now j5 1j1, j2 2T be the variable in frequency domain. 

Further, let r5"j1
21j2

2, v 5 arctan j1/j2 be the polar coordi-
nates in frequency domain. For the “dilated basic curvelets” in 
polar coordinates we use the ansatz 

f̂ j, 0, 0 1r, v2 :5 223j/4 W 122jr 2  V|Nj
1v 2 ,   r$0, v[ 30, 2p 2, j[N0,  

 (2)
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[FIG2] Plot of a Meyer wavelet ĉ 1j 2  in frequency domain.
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where we use suitable window functions W  and V|Nj
, and where a 

rotation of f̂ j, 0, 0 corresponds to the translation of a 2p-periodic 
window function V|Nj

. The index Nj indicates the number of wedges 
in the circular ring at scale 22j (see Figure 3). To construct a (dilat-
ed) basic curvelet with compact support near a “basic wedge” (see 
e.g., the gray wedge in Figure 3 for j5 0), the two windows W  and 
V|Nj

 need to have compact support. The idea is to take W 1r 2  sim-
ilarly as in the 1-D case, to cover the interval 10, ` 2  with dilated 
curvelets, and to take V|Nj

 such that a covering in each circular 
ring is ensured by translations of V|Nj

. Here, we have r [ 30, ` 2 , 
therefore we cannot take the complete Meyer wavelet to deter-
mine W, but only the part that is supported in 31/2, 2 4  (see 
Figure 2). Then the admissibility condition (1) yields 

 a
`

j52`
|W 122jr 2 |25 1 (3)

for r [ 10, ` 2 . For an explicit construction of W , see “Window 
Functions.” 

Further, for the tiling of a circular ring into N  wedges, 
where N  is an arbitrary positive integer, we need a 2p-periodic 
nonnegative window V|N  with support inside 322p/N, 2p/N 4  
such that 

a
N21

l50
V|N

2 av 2 2pl
N
b 5 1   for all v [ 30, 2p 2

is satisfied. Then only two “neighbored” translates of V|N
2  in the 

sum overlap. Such windows V|N  can be simply constructed as 
2p-periodizations of a scaled window V 1Nv /2p 2 , where V  is 
given in “Window Functions.” 

In this way we approach the goal to get a set of curvelet 
functions with compact support in frequency domain on wedg-
es, where in the circular ring that corresponds to the scale 22j 
the sum of the squared rotated curvelet functions depends only 
on W 122jr 2 , i.e., it follows that 

 a
Nj21

l50
` 23j/4 f̂j, 0, 0ar, v 2

2pl
Nj
b ` 25 |W 122jr 2 |2 aNj21

l50
V|Nj

2 av 2 2pl
Nj
b

 5 |W 122jr 2 |2. (4)

Together with (3), that means that using the rotations of 
the dilated basic curvelets f̂j, 0, 0, we are able to guarantee an 
admissibility condition similar to (1) for the 1-D wavelet frame. 
Remember that the translates of fj, 0, 0 have no influence here, 
since translates in space domain correspond to phase shifts in 
frequency domain that do not change the support of the 
Fourier transformed curvelets. The basic curvelet f̂ j, 0, 0, 0 is 
illustrated in Figure 4. 

There is a last point we have to attend to, namely the “hole” 
that arises in the frequency plane around zero, since the rota-
tions of the dilated basic curvelets work only in the scales 22j 
for j5 0, 1, 2, c. Taking now all scaled and rotated curvelet 
elements together with Nj J 4 # 2<j/2= we find for the scales 22j, 
j5 0, 1, c with (3) and (4) 

 a
`

j50
a

Nj21

l50
`23j/4 f̂j,0,0ar, v2

2pl
Nj
b ` 25 a

`

j50
|W 122jr 2 |2, 

and this sum is only for r . 1 equal to one. For a complete 
covering of the frequency plane, we therefore need to define a 
low-pass element 

[FIG3] Tiling of the frequency domain into wedges for 
curvelet construction.
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[FIG4] Basic curvelet f̂0,0,0 in the (a) frequency domain and (b) its support.
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  f̂21 1j 2 J W0 1 |j| 2  with  W0
2 1r 2 2 J 12 a

`

j50
W 122jr 2 2 (5)

that is supported on the unit circle, and where we do not con-
sider any rotation. 

HOW MANY WEDGES SHOULD 
BE TAKEN IN ONE CIRCULAR RING?
As we have seen already in Figure 3 and postulated in the last 
subsection, for the curvelet construction, there are Nj5 4 # 2<j/2= 
angles (or wedges) chosen in the circular ring (with radius 
2 j21/2 # r # 2 j11/2) corresponding to the 22jth scale, see [11]. 
But looking at the above idea to ensure the admissibility condi-
tion for a tight frame, one is almost free to choose the number 
of wedges/angles in each scale. Principally, the construction 
works for all ratios of angles and scales. In fact this is an impor-
tant point, where curvelets differ from other constructions. 

If we take the number of wedges in a fixed way, independent 1) 
of the scale, we essentially obtain steerable wavelets. 

If the number of wedges increases like 2) 1/scale (i.e., like 2j), 
then we obtain tight frames of ridgelets. 

If the number of wedges increases like 3) "1/scale (i.e., like 
2j/2), the curvelet frame is obtained. This special anisotropic 
scaling law yields the typical curvelet elements whose proper-
ties are considered next.

WHAT PROPERTIES DO THE CURVELET 
ELEMENTS HAVE?
To obtain the complete curvelet family, we need to consider the 
rotations and the translations of the dilated basic curvelets fj,0,0. 
We choose 

an equidistant sequence of rotation angles  ■ uj, l, 

 uj, l:5
pl 22 <j/2=

2
  with l5 0, 1, c, Nj2 1

the positions  ■ bk
j, l
5 bk1,k2

j, l J Ruj, l

21 11k1/2j 2 1k2/2j/2 22T  with 
k1, k2 [ Z, and where Ru denotes the rotation matrix with 
angle u. 

WINDOW FUNCTIONS
For constructing the curvelet functions we shall use the fol-
lowing special window functions. Let us consider the scaled 
Meyer windows (see [18,  p. 137]) 

V 1v 2 5 • 1 0v 0 # 1/3,
cos 3p2 n 13 0v 0 2 14 1/3 # 0v 0 # 2/3,

0 else,

 W 1r 2 5 µ cos 3p2n 152 6r 2 4 2/3 # r # 5/6,
1 5/6 # r # 4/3,

cos 3p2n 13r2 4 2 4 4/3 # r # 5/3,
0 else,

where n is a smooth function satisfying 

n 1x 2 5 e0 x # 0, 
1 x $ 1, 

  n 1x 2 1n 112 x 2 5 1,  x [ R.

For the simple case n 1x 2 5 x  in 30, 1 4, the window functions 
V 1v 2  and W 1r 2  are plotted in Figure S1. To obtain smoother 
functions W and V, we need to take smoother functions n. 
We  m a y  u s e  t h e  p o l y n o m i a l s  n 1x 2 5 3x22 2x3  o r 
n 1x 2 5 5x32 5x41 x5 in 30, 1 4, such that n is in C1 1R 2  or in C2 1R 2 . 
An example of an arbitrarily smooth window n is given by 

 n 1x 2 5 µ 0 x # 0,
s 1x21 2

s 1x21 21 s 1x 2 0, x , 1,

1 x $ 1

 
with s 1x 2 5 e2a 1111 x 22 1 1112 x 22b.

The above two functions V 1t 2  and W 1r 2  satisfy the conditions 

 a
`

l52`
V2 1v 2 l 2 5 1,  t [ R,  (S1)

 a
`

j52`
W2 12jr 2 5 1,  r . 0. (S2)

In particular, the 2p periodic window functions V|N 1v 2  need-
ed for curvelet construction, can now be obtained as 
2p-periodization of V 1Nv/2p 2 .
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[[FIGS1] Plot of the (a) windows V 1v 2  and (b) W 1r 2 .
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Then the family of curvelet functions is given by 

 fj,k,l 1x 2 J fj,0,0 1Ruj,l
1x2 bk

j,l 2 2  (6)

with indices j [ N0 and k5 1k1, k2 2 , l as above. 
One should note that the positions bk

j, l are on different regular 
grids for each different rotation angle, and these grids have differ-
ent spacing in the two directions being consistent with the para-
bolic scaling (i.e., with the ratio of angles and scales). This choice 
will lead to a discrete curvelet system that forms a tight frame, i.e., 
every function f [ L2 1R 2  will be representable by a curvelet 
series, and hence the discrete curvelet transform will be invertible. 

For example, for j5 0 we consider the angles u0, l5pl/2, 
l5 0, 1, 2, 3 and the positions 5bk

0, l6k[Z2, l50,1,2,35Z2. For j5 4, 
the angles u4, l5pl/8, l5 0, c, 15 occur, and, depending on 
the angles u4, l, eight different grids for translation are considered, 
where rectangles of size 1/16 3 1/4 are rotated by u4, l, 
l5 0, c, 7, see Figure 5. In particular, the choice of positions 
yields a parabolic scaling of the grids with the relationship length 
< 22j/2 and width < 22j. 

The underlying idea for the choice of the translation grids is as 
follows. Considering a band-limited function f, where f̂  has its 
support on a single wedge (e.g., in the scale 22j; see Figure 6), one 

can determine a rotation angle and a translation to map this 
wedge into the center of the frequency plane, then find a rectangle 
of size 2 j 3 2 j/2 to cover the wedge, and finally use the Shannon 
sampling theorem to fix the needed sampling rate for covering f. 
All sampling rates that are obtained in this way have to be taken, 
and thus one finds the needed positions as above. 

SUPPORT IN FREQUENCY DOMAIN 
In frequency domain, the curvelet function f̂j,k,l is supported 
inside the polar wedge with radius 2j21 # r # 2j11 and angle 
22 < j/2=p 1212l 2 /2 , v , 22 < j/2=p 112 l 2 /2.  The support of 
f̂j,k, l  does not depend on the position bk

j,l.  For example, 
f̂2,k, l 1r, v 2  is supported inside the wedge with 2 # r # 8 and 1212l 2p/4 # v # 112 l 2p/4,  l5 0, c, 7;  see Figure 6. 
(Here we have used supp V|Nj

( 322p/Nj, 2p/Nj 4  and supp 
W ( 31/2, 2 4.)
SUPPORT IN TIME DOMAIN 
AND OSCILLATION PROPERTIES
In time domain, things are more involved. Since f̂j,k,l has compact 
support, the curvelet function fj,k,l cannot have compact support 
in time domain. From Fourier analysis, one knows that the decay 
of fj,k,l 1x 2  for large |x| depends on the smoothness of f̂j,k,l in fre-
quency domain. The smoother f̂j,k, l, the faster the decay. 

By definition, f̂j,0,0 1j 2 , j [ N0, is supported away from the 
vertical axis j15 0 but near the horizontal axis j25 0; see Figure 6. 
Hence, for large j [ N0 the function fj,0,0 1x 2  is less oscillatory in 
x2-direction (with frequency about 22j/2) and very oscillatory in 
x1-direction (containing frequencies of about 2j21). The essential 
support of the amplitude  spectrum of fj,0,0 is a rectangle of size 32p2j21, p2j21 4 3 32p2j/2, p2j/2 4, and the decay of fj,0,0 away 
from this rectangle essentially depends on the smoothness of f̂ 
respectively, the windows V  and W. From (6), we simply observe 
that the essential support of fj,k, l is the rectangle rotated by the 
angle uj,l and translated by Ruj, l

bk
j,l. 

Remark 
The concept “essential support” of a function f  with good decay 
properties is used in literature without rigorous definition but 
with the following intuitive meaning: the essential support is a 
finite region that contains the most important features of the 
function. Outside this support, the graph of f  consists mainly of 
asymptotic tails that can be neglected in certain considerations. 

TIGHT FRAME PROPERTY 
The system of curvelets 5f21,k,0  :  k [ Z26h5fj,k,l  :  j [ N0, 

  l5 0, c, 4 # 2 < j/2=2 1, k5 1k1, k2 2T [ Z26
satisfies a tight frame property. That means, every function 
f [ L2 1R2 2  can be represented as a curvelet series 

 f5 a
j,k,l
8 f, fj,k, l9 fj,k, l,  (7)

and the Parseval identity 

[FIG6] Maximal supports of f̂2,k,0 and f̂2,k,5 (dark grey); of 
f̂3,k,3 f̂3,k,6 and f̂3,k,13 (light grey); and of f̂4,k,0 and f̂4,k,11 (grey). 
The translation index k [ Z2 does not influence the support of 
the curvelet elements.
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[FIG5] Grid for u4,0 5 0 and for u4,15p/8.
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a
j,k, l

|8f, fj,k, l9|25 7 f 7L2 1R222 ,  4f [ L2 1R2 2
holds. For a proof, we refer to [11]. The terms cj,k, l 1 f 2 J 8f, fj,k, l9  
are called curvelet coefficients. In particular, we obtain by 
Plancherel’s Theorem for j $ 0 

cj, k, l 1 f 2 J 3
R2

f 1x 2  fj,k, l 1x 2  dx5 3
R2

f̂ 1j 2  f̂j,k, l 1j 2  dj
 5 3

R2

f̂ 1j 2  f̂j,0,0 1Ruj,l
j 2  ei8 bk

j, l, j 9 dj. (8)

THE FAST CURVELET TRANSFORM

TRANSITION TO CARTESIAN ARRAYS
In practical implementations, one would like to have Cartesian 
arrays instead of the polar tiling of the frequency plane. Cartesian 
coronae are based on concentric squares (instead of circles) and 
shears (see Figure 7). Therefore, a construction of window func-
tions on trapezoids instead of polar wedges is desirable. Hence, we 
need to adapt the discrete curvelet system as given in the section 
“What Properties Do the Curvelet Elements Have?” suitably. Let us 
remark that the frequency tiling into shears, as given in Figure 7, 
has been similarly used for the construction of contourlets [21] by 
a pyramidal directional filter bank. However, the tiling for the con-
tourlet transform is slightly more flexible by allowing that the 
number of directions need not to be doubled at each second scale, 
see [21]. 

For the transition of the basic curvelet according to the new 
tiling, where rotation is replaced by shearing, we use the ansatz 

f|̂j,0,0 1j 2 J 223j/4W 122j
j1 2  Va2: j/2;j2

j1
b 

with the window function W  as in the section “How to Transfer 
This Idea to the Curvelet Construction” and with a nonnegative 
window V  with compact support in 322/3, 2/3 4; see “Window 
Functions.” This adapted scaled basic curvelet f|̂ j,0,0

 
 in Figure 8 is 

the Cartesian equivalent to f̂j, 0, 0 in (2) (see Figure 4). 

Observe that the support of Vj 1j 2 J V 12:j/2; j2/j1 2  is now 
inside the cone K1 J 5 1j1, j2 2 : j1 . 0, j2 [ 3 2 2j1/3, 2j1/3 4 6 . 
Hence the adapted basic curvelet f|̂ j,0,0

 
 determines the frequencies 

in the trapezoid 

e 1j1,j2 2 : 2j21 # j1 # 2j11, 2 22 :j/2; # 2
3
# j2/j1 # 22 :j/2; # 2

3
f .

To replace rotation of curvelet elements by shearing in the 
new grid, we need to consider the eastern, western, northern, 
and southern cone separately (see Figure 9 for the eastern 
cone). Let us only consider the shearing in the eastern cone 
K5 5 1j1, j2 2T: j1 . 0, 2j1 , j2 # j16, for the other cones, 
suitable curvelet elements are then obtained by rotation by 
6 p/2 radians and reflection. 

Instead of equidistant angles, we define a set of equispaced 
slopes in the eastern cone 

tanuj, l J l 22 :j/2;,   l5 2 2:j/2;1 1, c, 2:j/2;2 1.

Observe that the angles uj, l, which range between 2p/4 
and p/4, are not equispaced here, while the slopes are. 

Now, let the curvelet-like functions be given by 

 f|j, k, l 1x 2 J f
|

j, 0, 0 1Suj, l

T 1x2 b|k
j, l 2 2 ,  (9)

[FIG7] Discrete curvelet tiling with parabolic pseudopolar 
support in the frequency plane. 

[FIG8] (a) Basic curvelet f|̂0,0,0 and (b) its support adapted to the Cartesian arrays in frequency domain.
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being the Cartesian counterpart of fj, k, l  in (6), with the 
shear matrix 

Su 5 a 1 0
2 tanu 1

b, 

and where b|k
j,l J Suj, l

2T 1k1 2
2j, k2 2

2 : j/2; 2 5: Suj, l

2T kj  denotes the 
position of f|j,k,l in space domain. Let us have a closer look at 
the functions f| j,k,l . The Fourier transform gives by 
Suj, l

21j5 1j1, j1 tanuj, l1j2 2T  

 f|̂j,k,l 1j 2 5 e2i8|b
k
j, l, j 9f|̂j,0,0 1Suj, l

21 j 2
 5 e2i8|b

k
j, l, j 9 223j/4W 122jj1 2  V 12: j/2;j2/j11 l 2 .

Hence, f|̂ j,k,l is compactly supported on sheared trapezoids. 
Let us for example examine f|̂4,k,l. For j5 4, we consider the 

angles tanu4, l5 l/4, l5 2 3, c, 3. The support of f|̂ j,k,0 is 
symmetric with respect to the j1 axis, and for j5 4 we have 

supp f|̂4, k ,0 5 e 1j1, j2 2T: 8 # j1 # 32, 2
1
6
#
j1

j2
#

1
6
f .

The supports of f|̂4,k,l with l523, c, 3 in the eastern cone 
are now sheared versions of this trapezoid (see Figure 9). 

The set of curvelets f|j,k, l in (9) needs to be completed by sym-
metry and by rotation by 6p/2 radians to obtain the whole family. 
Moreover, as we can also see in Figure 9, we need suitable “corner 
elements” connecting the four cones (north, west, south, and 
east). In [7], it is suggested to take a corner element as the sum of 
two half-part sheared curvelet functions of neighboring cones as 
indicated in Figure 9 (on the left). 

Finally, the coarse curvelet elements for low frequencies are 
needed, and we take here 

f|21,k,0 1x 2 J f|21 1x2 k 2 ,   k [ Z2, 

where f|̂21 1j 2 J W0 1j1 2W 0 1j2 2  [with W0 in (5)] has its support 
in 3 2 1, 1 42. For this construction of curvelet-like elements one 
can show the frequency tiling property 

f|̂21 1j 2 1 a
`

j50
a
2:j/2;

l522:j/2;2
3j/4

 f|̂ j,0, l 1j 2 5 1

for all j in the eastern cone K5 5j5 1j1, j2 2T:  j1 . 0, j2 
[ 3 2j1, j1 4 6, where we have taken also the two corner elements 
in the sum. Similarly, this assertion is true for the rotated func-
tions in the other three cones. 

THE ALGORITHM
We find the Cartesian counterpart of the coefficients in (8) by 

c|j,k,l 1 f 2 5 8f, f|j,k,l95 3
R

2 f̂ 1j 2  f|̂j,0,0
1Suj,l

21
j 2  ei8b|k

j,l, j9dj
 5 3

R2 f̂ 1Suj, l
j 2  f|̂j,0,0 1j 2  ei8kj, j9dj (10)

with kj5 1k12
2j, k22

2 :
 
j/2; 2T, 1k1, k2 2T [ Z2. 

The forward and the inverse fast discrete curvelet trans-
form as presented in [7] have a computational cost of 
O 1N 2log N 2  for an 1N 3 N 2  image, see e.g., CurveLab (http://
curvelab.org) with a collection of MATLAB and C++ programs. 
The redundancy of that curvelet transform implementation is 
about 2.8 when wavelets are chosen at the finest scale, and 7.2 
otherwise (see e.g., [7]);  see the “Forward Algorithm,” which 
uses formula (10).

For the inverse curvelet transform, one applies the algorithm 
in each step in reversed order. Observe that in the second step, a 
suitable approximation scheme has to be applied in the forward 
transform and in the inverse transform. 

THREE-DIMENSIONAL CURVELET TRANSFORM
For three-dimensional (3-D) data, a generalization to 3-D multi-
scale geometric methods is of great interest. So far, only a few 
papers have been concerned with applications of the 3-D 

[FORWARD ALGORITHM] 

1) Compute the Fourier transform of f  by means of a 2-D FFT. 
Let f  be given by its samples f 1 1n1/N 2 , 1n2/N 2 2  n1, n25 0, c, N2 1, where 
N  is of the form N5 2J, J [ N. Suppose, that f  can be approximated by a 
linear combination of bivariate hat functions. Let s| 1x 2 5 s 1x1 2  s 1x2 2  with 
s 1x1 2 J 112 |x1| 2  x321, 14 1x1 2  and 

f 1x 2 5 a
N21

n150
a
N21

n250
f an1

N
, 

n2

N
b s| 1Nx12 n1, Nx22 n2 2 .

With s|̂ 1j 2 5 1sinc j1/2 22 1sinc j2/2 22 it follows that 

f̂ 1j 2 5 a
N21

n150
a
N21

n250
f an1

N
, 

n2

N
b e2i1n1j11n2j22/N s|̂a j

N
b, 

and the 2-D FFT of length N  gives us the samples f̂ 12pn1, 2pn2 2 , 
n1, n25 2N/2, c, 1N/2 22 1. 

2) Compute f̂ 1Suj, l
j 2  by interpolation. 

Fix the scales to be considered, say j0 # j # J. The support of f|̂j,0,0 is con-
tained in the rectangle Rj5 32j21, 2j11 4 3 3 2 2:j/2;, 2:j/2; 4. For each pair 1 j, l 2  
compute now f̂ 12pn1, 2pn22 2pn1tanuj, l 2  for 2p 1n1, n2 2 [ Rj. 

3) Compute the product f̂ 1Suj, l j 2  f|̂ j,0,01j 2 . 
For each pair 1 j, l 2  compute the product 
f̂ 12pn1, 2pn22 2pn1tanuj,I 2  f|̂j,0,0 12pn1, 2pn2 2 . 
4) Apply the inverse 2-D FFT to obtain the discrete coefficients c|j, k, l

D 1 f 2  that 
are an approximation of the coefficients in (10). 
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[FIG9] Supports of the functions f|̂4,k,l  for l523, c, 3, and 
one corner element.  
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 curvelet transform to 3-D turbulence [2], [47] and 3-D seismic 
processing [52]. 

The idea of the 3-D curvelet transform on Cartesian arrays 
can be carried out analogously as done in the section “Transition 
to Cartesian Arrays” for the 2-D case. This time, one considers 
curvelet functions being supported on sheared truncated pyra-
mids instead of sheared trapezoids. The 3-D curvelet functions 
then depend on four indices instead of three; the scale, the posi-
tion and two angles; and for the shearing process, one can intro-
duce 3-D shear matrices. 

A fast algorithm can be derived similarly as in the section 
“The Algorithm” for the 2-D case. The computational complexi-
ty of the 3-D  discrete curvelet transform based on FFT algo-
rithms is O 1n3 log n 2  flops for n 3 n 3 n data [7]. For further 
details, we refer to [7] and [68]. 

RECENT APPLICATIONS
In this section, we shall review applications of the curvelets in 
image processing, seismic exploration, fluid mechanics, solving 
of PDEs, and compressed sensing, to show their potential as an 
alternative to wavelet transforms in some scenarios. 

IMAGE PROCESSING
In 2002, the first-generation curvelet transform was applied for 
the first time to image denoising by Starck et al. [60], and by 
Candès and Guo [13]. The applications of the first-generation 
curvelets were extended to image contrast enhancement [62] 
and astronomical image representation [61] in 2003, and to 
fusion of satellite images [17] in 2005. After the effective sec-
ond-generation curvelet transform [12] had been proposed in 
2004, the applications of curvelets increased quickly in many 
fields involving image/video presentation, denoising, and clas-
sification. For instance, Ma et al. applied the second-generation 
curvelets for motion estimation and video tracking of geophysi-
cal flows [45] and deblurring [43]. Ma and Plonka presented 
two different models for image denoising by combining the 
discrete curvelet transform with nonlinear diffusion schemes. 
In the first model [49], a curvelet shrinkage is applied to the noisy 
data, and the result is further processed by a projected total varia-
tion diffusion to suppress pseudo-Gibbs artifacts. In the second 
model [56], a nonlinear reaction-diffusion equation is applied, 
where curvelet shrinkage is used for regularization of the diffusion 
process. Starck et al. [63], [3] applied curvelets for morphological 
component analysis. Recently, B. Zhang et al. [69] used curvelets 
for Poisson noise removal in comparison with wavelets and ridge-
lets. In [70], C. Zhang et al. successfully applied the multiscale 
curvelet transform to multipurpose watermarking for content 
authentication and copyright verification. Jiang et al. [36] consid-
ered structure and texture image in painting with the help of an 
iterative curvelet thresholding method. Tessens et al. [66] pro-
posed a new context adaptive image denoising by modeling of 
curvelet domain statistics. By performing an intersubband statisti-
cal analysis of curvelet coefficients, one can distinguish between 
two classes of coefficients: those that represent useful image con-
tent, and those dominated by noise. Using a prior model based on 

marginal statistics, an appropriate local spatial activity  indicator 
for curvelets has been developed that is found to be very useful for 
image denoising, see [66]. Geback et al. [30] applied the curvelets 
for edge detection in microscopy images. 

Interestingly, the pure discrete curvelet transform is less suit-
able for image compression and for image denoising. The reason 
may be the redundancy of the curvelet frame. Most successful 
approaches related with the discrete curvelet transform are hybrid 
methods, where curvelets are combined with another technique 
for image processing. These methods usually can exploit the ability 
of the curvelet transform to represent curve-like features. 

Let us give one example of image denoising [49], where curve-
let shrinkage is combined with nonlinear anisotropic diffusion. 
Figure 10(a) shows a part of noisy Barbara image. Figure 10(b)–(f) 
present the denoising results by using tensor-product Daubechies’s 
DB4 wavelets, TV diffusion, contourlets, curvelets, and 
TV-combined curvelet transform [49], respectively. The curvelet-
based methods preserve the edges and textures well. 

SEISMIC EXPLORATION
Seismic data records the amplitudes of transient/reflecting waves 
during receiving time. The amplitude function of time is called 
seismic trace. A seismic data or profile is the collection of these 
traces. All the traces together provide a spatio-temporal sam-
pling of the reflected wave field containing different arrivals that 
respond to different interactions of the incident wave field with 
inhomogeneities in Earth’s subsurface. Common denominators 
among these arrivals are wave fronts (as shown in Figure 11(a) 
for a real seismic profile), which display anisotropic line-like fea-
tures, as edges and textures in images. They basically show 
behaviors of C2-continuous curves. The main characteristic of 
the wave fronts is their relative smoothness in the direction 
along the fronts and their oscillatory behavior in the normal 
direction. A crucial problem in seismic processing is to preserve 
the smoothness along the wave fronts when one aims to remove 
noise. From a geophysical point of view, curvelets can be seen as 
local plane waves. They are optimal to sparsely represent the 
local seismic events and can be effectively used for wave 
 front- preserving seismic processing. Therefore, the curvelet 
decomposition is an appropriate tool for seismic data processing. 

Figure 11 shows a denoising of a real seismic data set by curve-
lets, in comparison to wavelets. Five decomposing levels are used 
in both transforms. Figure 12 shows the comparison of subband 
reconstruction in the first three levels; from coarse scale to fine 
scale. It can be seen clearly that the curvelets perform much better 
than wavelets to preserve the wave fronts/textures in multiscale 
decomposition and denoising. We also observe that the curvelet 
transform can achieve an almost complete data reconstruction if 
used without any thresholding for coefficients (reconstructed 
signal-to-noise ratio (SNR) 5 310.47 and error 5 2.9770e-010). 

So far, curvelets have been applied successfully in seismic pro-
cessing. Hennenfent and Herrmann [32] suggested a nonuni-
formly sampled curvelet transform for seismic denoising. 
Neelamani et al. [52] proposed a 3-D curvelet-based effective 
approach to attenuate random and coherent noise in a 3-D data 
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set from a carbonate environment. Comparisons of wavelets, con-
tourlets, curvelets, and their combination for denoising of ran-
dom noise have been also investigated in [58]. Douma and de 
Hoop [25] presented a leading-order seismic imaging by curve-
lets. They show that using curvelets as building blocks of seismic 
data, the Kirchhoff diffraction stack can (to leading order in angu-
lar frequency, horizontal wave number, and migrated location) be 
rewritten as a map migration of coordinates of the curvelets in 
the data, combined with an amplitude correction. This map 
migration uses the local slopes provided by the curvelet decompo-
sition of the data. Chauris and Nguyen [16] considered seismic 
demigration/migration in the curvelet domain. The migration 
consists of three steps: decomposition of the input seismic data 
(e.g., common offset sections) using the curvelet transform; inde-
pendent migration of the curvelet coefficients; and inverse curvelet 

transform to obtain the final depth migrated image. Currently, 
they concentrate on a ray-based type of prestack depth-migration 
(i.e., common-offset Kirchhoff depth migration) with respect to 
heterogeneous velocity models. It turns out that curvelets are 
almost invariant under the migration operations. The final objec-
tive is to be able to derive a formulation and build an efficient 
algorithm for the full waveform inversion in the curvelet domain. 

In addition, curvelet-based primary-multiple separation [35], 
extrapolation [41], and seismic data recovery [34], [33], [65] 
have been also proposed by Herrmann et al.

TURBULENCE ANALYSIS IN FLUID MECHANICS
Turbulence has been a source of fascination for centuries 
because most fluid flows occurring in nature, as well as in engi-
neering applications, are turbulent. Fluid turbulence is a para-

digm of multiscale phenomena, where the 
coherent structures evolve in an incoher-
ent random background. Turbulence is 
difficult to approximate and analyze 
mathematically or to calculate numeri-
cally because of its range of spatial and 
temporal scales. The geometrical repre-
sentation of flow structures might seem 
to be restricted to a well-defined set of 
curves along which the data are singular. 
As a consequence, the efficient compres-
sion of a flow field with minimum loss of 

[FIG10] Image denoising: (a) noisy image, (b) wavelet denoising, (c) TV-diffusion denoising, (d) contourlet denoising, (e) curvelet 
denoising, and (f) TV-combined curvelet denoising. 
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[FIG11] Comparison of seismic denoising: (a) original data, (b) wavelet denoising, and
(c) curvelet denoising.

(a) (b) (c)

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on June 27,2010 at 18:06:39 UTC from IEEE Xplore.  Restrictions apply. 

MATLAB code can be download from matlab1.com

matlab1.com 



IEEE SIGNAL PROCESSING MAGAZINE   [129]   MARCH 2010

the geometric flow structures is a crucial 
problem in the simulation of turbulence. 
The development of appropriate tools to 
study vortex breakdown, vortex reconnec-
tion, and turbulent entrainment at lami-
nar-turbulent interfaces, is imperative to 
enhance our understanding of turbu-
lence. Such tools must capture the vorti-
cal structure and dynamics accurately to 
unravel the physical mechanisms under-
lying these phenomena. 

Recently, the curvelets have been 
applied to study the nonlocal geometry of 
eddy structures and the extraction of the 
coherent vortex field in turbulent flows 
[2], [47], [48]. Curvelets start to influ-
ence the field of turbulence analysis and 
have the potential to upstage the wavelet 
representation of turbulent flows 
addressed in [26] and [27]. The multi-
scale geometric property, implemented by 
means of curvelets, provides the frame-
work for studying the evolution of the 
structures associated to the main ranges 
of scales defined in Fourier space, while 
keeping the localization in physical space 
that enables a geometrical study of such 
structures. Such a geometrical character-
ization can provide a better understand-
ing  o f  cascade  mechanics  and 
dissipation-range dynamics. Moreover, 
curvelets have the potential to contribute 
to the development of structure-based 
models of turbulence fine scales, subgrid-
scale models for large-eddy simulation, 
and simulation methods based on prior wavelet transforms [2]. 

Figure 13 gives an example of the extraction of coherent 
fields from turbulent flows. The curvelet method preserves the 
edges and structures better than wavelet methods. The results 
of multiscale turbulence analysis depend on the threshold or 
shrinkage. The question of how to find the optimal threshold 
to  separate  coherent fields and incoherent random fields still 
remains open. 

SOLVING OF PDES

Candès and Demanet [5], [6] have shown that curvelets essen-
tially provide optimally sparse representations of Fourier inte-
gral operators. While the wavelet transform is optimal for 
solving elliptical PDEs, the motivation to use the curvelet 
transform is that for a wide class of linear hyperbolic differen-
tial equations, the curvelet representation of the solution 
operator is both optimally sparse and well organized. Sparsity 
means that the matrix entries decay nearly exponentially fast, 
and they are well organized in the sense that very few nonneg-
ligible entries occur near a few shifted diagonals. Wave fronts 

of solutions can be also sparsely represented in curvelet 
domain [6]. Some updated results for hyperbolic evolution 
equations with limited smoothness have been obtained by 
Andersson et al. [1]. The key idea of the existing methods is 
first to decompose the initial fields by the curvelet transform, 
and then to compute the rigid motions of the significant 
curvelet coefficients along Hamiltonian ray flows at each scale. 
Finally, one needs to reconstruct the evolution coefficients at 
all scales by an inverse curvelet transform and obtains an 
approximate wave field u 1x, t 2  at a given time t. The theory is 
quite elegant but still far away from practical applications. The 
papers cited above show the potential of curvelets for solving 
of PDEs from the point of view of mathematical analysis and 
raise the hope to achieve fast algorithms for the solution of 
hyperbolic PDEs using curvelets. 

Let us consider a wave equation with the associated Cauchy 
initial value problem 

'2u
't2
1x, t 2 5y2 Du 1x, t 2   u 1x, 0 2 5 u0 1x 2 ,  'u

't
1x, 0 2 5 u1 1x 2 .

 (11)

[FIG12] Comparisons of subband reconstruction in the first three levels from coarse scale 
to fine scale by (a)–(c) wavelet transform and (d)–(f) curvelet transform.

(d) (e) (f)

(a) (b) (c)

[FIG13] Extraction of coherent fields from turbulent flows: (a) original flow, (b) coherent 
components by wavelets, and (c) curvelets.

(a) (b) (c)
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For simplicity, assume that y  is a constant wave speed, 
and Du 1x, t 2 5 '2/x1

2 u 1x, t 2 1 1'2 2 / 1x2
2 2u 1x, t 2  denotes the 

usual Laplace operator. Its solution can be written as 
u 1x, t 2 5 F 1x, t 2u0 1x 2 1G 1x, t 2u1 1x 2 ,  with suitable solution 
operators F 1x, t 2  and G 1x, t 2  (involving Green’s functions) 
that can be sparsely represented in curvelet domain. 

Curvelet-based finite difference schemes for seismic wave equa-
tions have been studied in [64]. The goal is to construct a fast 
adaptive scheme for numerical modeling of wave propagation. 
Similarly as with prior wavelet-based finite difference schemes, 
one crucial problem is to explore how the differential operator D 
(or 'xi

) can be computed by the curvelet transform in an efficient 
way. The 2-D wave field u can be transformed into curvelet domain 
by u 1x1, x2, t 2 5 am

cm 1 t 2fm 1x1, x2 2 . Here, we have used the 
tight frame property (7) with the short notation m5 1 j, k, l 2 , and 
cm 1 t 2  denotes the mth curvelet coefficient of u at time t. A possi-
ble way to compute the curvelet coefficients of Du is 

cm
^ J cm 1Du 2 J 3Du 1x, t 2  fm 1x 2  dx5 3Du^ 1j, t 2  f̂m 1j 2  dj 

 5 3 12j1
22j2

2 2  û 1j, t 2  f̂m 1j 2  dj.

Using the definition of the curvelet coefficients in (10), we 
obtain with Suj, l j5 1j1, 2j1tanuj, l1j2 2T  

cm
^5 3 3 2 111 tan2uj,l 2  j1

22j2
21 2 1 tanuj,l 2  j1j2 4  

 3 û 1Suj,l
j 2  f|̂j,0,0 1j 2  ei8kj,j9 dj

 5 4j 111tan2uj,l 2'2cm

'k1
2 14: j/2;'2cm

'k2
2 22j11 2: j/2; tanuj, l 

'2cm
'k1'k2

.

Here we recall that k5 1k1, k2 2T [ Z2 and kj5 1k1/2j, k2/2:j/2; 2T. 
That means, we can obtain the curvelet coefficients of Du by 

using the coefficients of the instant wave field u. Thus, we can 
rewrite the wave equation in coefficient domain by 

 
'2cm

't2 5y
2a4j 111 tan2uj,l 2'2cm

'k1
2 1 4:j/2;'2cm

'k2
2

 2 2j11 2: j/2;tanuj,l 
'2cm
'k1'k2

b. (12)

Figure 14 shows an example of curvelet coefficients of an 
instant wave field at the coarsest curvelet detail scale, by imple-
menting the computation in curvelet domain as given in (12). 
For details of this approach we refer to [64]. Using suitable 
thresholding, one can implement a fast adaptive computation for 
the wave propagation. Unfortunately, due to the redundancy of 
the current discrete curvelet algorithm, the curvelets have not 
performed at the level that we expected. The matrices are not as 
sparse as the estimates promise. The efficient numerical treat-
ment of PDEs using curvelets is still a challenging problem. 

COMPRESSED SENSING
Finally, we mention a new direction of applications of the curve-
let transform to the so-called compressed sensing or compres-
sive sampling (CS), an inverse problem with highly incomplete 
measurements. CS [14], [15], [22] is a novel sampling paradigm 
that carries imaging and compression simultaneously. The CS 
theory says that a compressible unknown signal can be recov-
ered by a small number of random measurements using sparsi-
ty-promoting nonlinear recovery algorithms. The number of 
necessary measurements is considerably smaller than the num-
ber of needed traditional measurements that satisfy the 
Shannon/Nyquist sampling theorem, where the sampling rate 
has to be at least twice as large as the maximum frequency of 
the signal. The CS-based data acquisition depends on its sparsity 

[FIG14] Curvelet coefficients of an instant wave field at the coarsest curvelet detail scale. (a)–(h) denotes eight different directional 
subbands in this curvelet scale. 
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rather than its bandwidth. CS might have an important impact 
for designing of measurement devices in various engineering 
fields such as medical magnetic resonance (MRI) imaging and 
remote sensing, especially for cases involving incomplete and 
inaccurate measurements limited by physical constraints, or 
very expensive data acquisition. 

Mathematically, we handle the fundamental problem of 
recovering a signal x [ RN  from a small set of measure-
ments y [ RK. Let A [ RK3N  be the so-called CS measure-
ment matrix, where K V N, i.e., there are much fewer rows 
in the matrix than columns. The measurements can be 
described as [14] 

 y5 Ax1 P. (13)

Here P denotes possible measurement errors or noise. It seems 
to be hopeless to solve this ill-posed 
underdetermined linear system since the 
number of equations is much smaller 
than the number of unknown variables. 
However, if the x  is compressible by a 
transform, as e.g., x5 T21c,  where T 
denotes the discrete curvelet transform, 
and the sequence of discrete curvelet coef-
ficients c5 1cm 2  is sparse, then we have 
y5 AT21c1 P5 A|c1 P. If the measure-
ment matrix A is not correlated with T, 
the sparse sequence of curvelet coeffi-
cients c can be recovered by a sparsity-
constraint l1-minimization [14] 

min
c
7y2 A|c 7 l2

1l 7c 7 l1
.

The second term is a regularization term 
that represents the a priori information of 
sparsity. To solve the minimization, an 
iterative curvelet thresholding (ICT) can 
be used, based on the Landweber descent 
method (see, e.g., [33]) 

cp115 St 1cp1 A|T 1y2 A|cp 2 2 , 
until 7cp112 cp 7 , e, for a given error e. 
Here the (soft) threshold function St, 
given by 

 St 1x 2 5 •x2t,    x $ t,
x1t,    x # 2t,
0,           |x| , t, 

 

is taken component wisely, i.e., for a se -
quence a5 1am 2  we have St 1a 2 5 1St am 2 .

Figure 15 shows an example of com-
pressed sensing with 25% Fourier mea-
surements. Here the operator A  is 

obtained by a random subsampling of the Fourier matrix. 
Figure 15(b) shows the 25% samples in Fourier domain, 
Figure 15(c) is the recovering result by zero-filling recon-
struction, and Figure 15(d) is the result found by ICT. Figure 
15(e) and (f) denotes the changes of the SNR and errors of the 
recovered images as the number of iterations increases. The 
unknown MRI image can be obtained by using highly incom-
plete measurements, which can reduce the online measure-
ment time and thus lessen the pain of a patient. 

The motivation of applying the curvelet thresholding 
method is that most natural images are compressible by the 
curvelet transform. Currently, a few researchers have applied 
the ICT method to compressed sensing in seismic data recov-
ery [33], [34], [65], and remote sensing [44], [46]. Variant 
ICT methods (see e.g., [57]) have been also proposed for com-
pressed sensing.

SNR = 26.95 dB SNR = 46.33 dB
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[FIG15] Compressed sensing in Fourier domain for medical imaging: (a) original MRI 
image, (b) pseudorandom Fourier sampling, (c) recovery by zero-filling reconstruction, (d) 
recovery by ICT, (e) SNR (in dB) of the recovered image versus the number of iterations 
for the ICT, and (f) recovery error versus the number of iterations for the ICT.
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Figure 16 shows an example for the curvelet-based com-
pressed sensing in remote sensing [44], [46]. It can be seen 
that the curvelet method is superior to the wavelet method 
to recover the edges. 

FUTURE WORK
The multiresolution geometric analysis technique with 
curvelets as basis functions is verified as being effective in 
many fields. However, there are some challenging prob-
lems for future work. 

The computational cost of the curvelet transform is higher 1) 
than that of wavelets, especially in terms of 3-D problems. 
However, the theory and application of the 3-D curvelets are 
burgeoning areas of research, and it is possible that more effi-
cient curvelet-like transforms will be developed in the near 
future. Currently, a fast message passing interface-based paral-
lel implementation can somewhat reduce the cost [68]. How 
to build a fast orthogonal curvelet transform is still open. 

The issue of how to explore suitable thresholding func-2) 
tions that incorporate and exploit the special characteris-
tics of the curvelet transform is very important for 
curvelet applications involving edge detection, denoising, 
and numerical simulation. 
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